Status of the bibliography 8/31/2025 (exported from Zotero)
- Abbasi, M., Mansouri, M., Daryasafar, A., Sharifi, M., 2018. Analytical model for heat transfer between vertical fractures in fractured geothermal reservoirs during water injection. Renewable Energy 130, 73–86. https://doi.org/10.1016/j.renene.2018.06.043
- Abdelfettah, Y., Hinderer, J., Calvo, M., Dalmais, E., Maurer, V., Genter, A., 2020. Using highly accurate land gravity and 3D geologic modeling to discriminate potential geothermal areas: Application to the Upper Rhine Graben, France. GEOPHYSICS 85, G35–G56. https://doi.org/10.1190/geo2019-0042.1
- Abdulagatov, I., Rasul, A., Gasan, B., 2023. Thermodynamic and Transport Properties of Geothermal Fluids from South Russia Geothermal Field, in: 48th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California.
- Aboud, E., Alqahtani, F., Abdulfarraj, M., Abraham, E., El-Masry, N., Osman, H., 2023. Geothermal Imaging of the Saudi Cross-Border City of NEOM Deduced from Magnetic Data. Sustainability 15, 4549. https://doi.org/10.3390/su15054549
- Adityatama, D., Al Asyari, R., Erichatama, N., Brilian, V., Purba, D., Fadhillah, F., 2024. Recent Slimhole Drilling Experience for Geothermal Exploration in Indonesia: Problem Summary and Potential Improvement, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 10.
- Adl-Zarrabi, B., 2006. Thermal properties of rocks using calorimeter and TPS method (No. P-06-66). Svensk Kärnbränslehantering AB, Stockholm, Sweden.
- Ajwalia, K., 2021. Comprehensive Review Of ORC’s Application: Waste Heat Recovery System In IC Engine, in: 46th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 9.
- Akhmad, A., Putra, B.D., Sihombing, M.M., Ayu, S.T., Yolanda, T., 2021. A Numerical Study for Determining Lateral Thermal Gradient Based on Reservoir Properties, in: 46th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford California, p. 14.
- Akin, R.H., Graves, Jr., R.W., 1969. Reynolds Oolite of Southern Arkansas. AAPG Bulletin 53, 1909–1922.
- Aksoy, N., Mutlu, H., Solak, Ö.G., Kilinc, G., 2015. CO2 Emission from Geothermal Power Plants, in: World Geothermal Congress 2015. World Geothermal Congress, Melbourne, Australia.
- Alamsyah, R., Maratama, I., Yursra, S., Atmaja, R., Arrsasy, I., 2024. Project Development Update of the Dieng Unit-2 Geothermal Power Plant, Dieng Geothermal Field, Indonesia, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 8.
- Al-Fakih, A., Al-Khudafi, A., 2024. Unlocking the Potential of Geothermal Energy in Yemen: A Comparative Analysis with Global Trends, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 9.
- Alharbi, O.Q., Alarifi, S.A., 2023. Productivity Index Prediction for Single-Lateral and Multilateral Oil Horizontal Wells Using Machine Learning Techniques. ACS Omega 8, 7201–7210. https://doi.org/10.1021/acsomega.3c00289
- Allis, R., Gwynn, M., Hardwick, C., Moore, J., 2018. The Challenge of Correcting Bottom-Hole Temperatures - an Example from FORGE 58-32, Near Milford, Utah, in: 43rd Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 8.
- Alsaleh, M., Abdul-Rahim, A.S., 2023. Rethinking the governance of geothermal power industry: The roadmap for sustainable development. Energy Exploration & Exploitation 41, 1821–1849. https://doi.org/10.1177/01445987231185885
- Altar, D.E., Kaya, E., Zarrouk, S.J., Chambefort, I., 2024. Natural state geothermal reservoir modelling: Mineralogical and geochemical evolution perspective. Geothermics 123, 103132. https://doi.org/10.1016/j.geothermics.2024.103132
- Amaya, A., Chandrasekar, H., Molina, S., Brown, S., Scherer, J., 2024. Heat Extraction Processes Using Unconventional Geothermal Technologies (GreenLoop) Applied in Different Reservoir Types, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 8.
- Are electric vehicles definitely better for the climate than gas-powered cars? | MIT Climate Portal [WWW Document], n.d. . MIT Climate Portal. URL https://climate.mit.edu/ask-mit/are-electric-vehicles-definitely-better-climate-gas-powered-cars (accessed 12.26.24).
- Assessment of Geothermal Resources of the United States (Circular No. 790), 1978. . United States Geological Survey, Arlington, Virginia.
- Audio-frequency magnetotelluric data inversion method based on an adaptive binary structure constraint and its application in geothermal exploration [WWW Document], n.d. https://doi.org/10.1190/geo2024-0462.1
- Aydin, H., Temizel, C., 2022. Geothermal Reservoir Characterization, in: 47th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California.
- Badache, M., Eslami-Nejad, P., Ouzzane, M., Aidoun, Z., Lamarche, L., 2016. A new modeling approach for improved ground temperature profile determination. Renewable Energy 85, 436–444. https://doi.org/10.1016/j.renene.2015.06.020
- Bannwarth, A., 2024. U Arkansas BHT state-wide project (map). University of Arkansas, Fayetteville, Arkansas.
- Baralis, M., Barla, M., 2024. rOGER: A method for determining the geothermal potential in urban areas. Geothermics 124, 103148. https://doi.org/10.1016/j.geothermics.2024.103148
- Baria, L.R., Stoudt, D.L., Harris, P.M., Crevello, P.D., 1982. Upper Jurassic Reefs of Smackover Formation, United States Gulf Coast. Bulletin 66. https://doi.org/10.1306/03B5A96C-16D1-11D7-8645000102C1865D
- Başaran, T., Çetin, B., Özdemir, M.R., 2022. Thermodynamic and mathematical analysis of geothermal power plants operating in different climatic conditions. Case Studies in Thermal Engineering 30, 101727. https://doi.org/10.1016/j.csite.2021.101727
- Baxter, A., Hawkins, A., Tang, D., Wiesner, U., Fulton, P., Tester, J., Hormozi, S., 2024. The Rheology of Temperature-Responsive Volume-Phase Transition Hydrogels for the Improved Thermal Performance and Lifetime of GeoThermal Reservoirs, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 11.
- Beard, J.C., Jones, B.A., 2023. The Future of Geothermal in Texas: Contemporary Prospects and Perspectives. The University of Texas at Austin.
- Beckers, K.F., McCabe, K., 2019. GEOPHIRES v2.0: updated geothermal techno-economic simulation tool. Geotherm Energy 7, 5. https://doi.org/10.1186/s40517-019-0119-6
- Bedinger, M.S., Sniegocki, R.T., Poole, J.L., 1970. The Thermal Springs of Hot Springs National Park, Arkansas - Factors Affecting Their Environment and Management (Open-File Report), Open-File Report. United States Geological Survey, Little Rock, Arkansas.
- Bennett, C.R., Nash, G., Barker, B., 2017. The Convergence of Heat, Groundwater & Fracture Permeability: Innovative Play Fairway Modeling Applied to the Tularosa Basin (DOE project report No. DOE contract #DE-EE0006730). Ruby Mountain, Inc., Salt Lake City, UH.
- Berner, R.A., 1997. The Rise of Plants and Their Effect on Weathering and Atmospheric CO 2. Science 276, 544–546. https://doi.org/10.1126/science.276.5312.544
- Bilim, F., Akay, T., Aydemir, A., Kosaroglu, S., 2016. Curie point depth, heat-flow and radiogenic heat production deduced from the spectral analysis of the aeromagnetic data for geothermal investigation on the Menderes Massif and the Aegean Region, western Turkey. Geothermics 60, 44–57. https://doi.org/10.1016/j.geothermics.2015.12.002
- Birdsell, D.T., Adams, B.M., Deb, P., Ogland-Hand, J.D., Bielicki, J.M., Fleming, M.R., Saar, M.O., 2024. Analytical solutions to evaluate the geothermal energy generation potential from sedimentary-basin reservoirs. Geothermics 116, 102843. https://doi.org/10.1016/j.geothermics.2023.102843
- Birdwell, J., Whidden, K., Paxton, S., Kinney, S., Gardner, R., Pitman, J., French, K., Mercier, T., Woodall, C., Leathers-Miller, H., Schlenk, C., 2024. Assessment of Undiscovered, Technically Recoverable Conventional Oil and Gas Resources in the Upper Jurassic Smackover Formation, U.S. Gulf Coast, 2022 (Assessment No. 2023–3046). United States Geological Survey.
- Bishop, W., 1967. Age of Pre-Smackover Formations, North Louisiana and South Arkansas: Geological Notes. AAPG Bulletin 51, 10.
- Blackwell, D., Richards, M., Frone, Z., Batir, J., Ruzo, A., Dingwall, R., Williams, M., 2011. Temperature-At-Depth Maps for the Conterminous U. S. and Geothermal Resource Estimates. GRC Transactions, Geothermal: Sustainable, Green Energy 35, 1545–1550.
- Blankenship, D., Gertler, C., Kamaludeen, M., O’Conner, M., Porse, S., 2024. Pathways to Commercial Liftoff: Next-Generation Geothermal Power. United States Department of Energy.
- Blázquez, C.S., Maté-González, M.Á., Nieto, I.M., Martín, A.F., González-Aguilera, D., 2022. Assessment of the geothermal potential in the region of Ávila (Spain): An integrated and interactive thermal approach. Geothermics 98, 102294. https://doi.org/10.1016/j.geothermics.2021.102294
- Blodgett, L., 2014. Geothermal 101: Basics of Geothermal Energy.
- Boschetti, T., Salvioli-Mariani, E., Toscani, L., 2024. Lithium-rich basement brines: Activity versus concentration geothermometry. Geothermics 119, 102965. https://doi.org/10.1016/j.geothermics.2024.102965
- Bouligand, C., Glen, J.M.G., Blakely, R.J., 2009. Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization. J. Geophys. Res. 114, 2009JB006494. https://doi.org/10.1029/2009JB006494
- Breede, K., Dzebisashvili, K., Liu, X., Falcone, G., 2013. A systematic review of enhanced (or engineered) geothermal systems: past, present and future. Geotherm Energy 1, 4. https://doi.org/10.1186/2195-9706-1-4
- Brehme, M., Jentsch, A., 2024. Underwater Geothermal Exploration - diving into the deep, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 8.
- Brennand, A., 1984. A New Method For The Analysis of Static Formation Temperature Tests, in: 6th NZ Geothermal Workshop. The University of Auckland, Auckland, New Zealand.
- Breuer, R., Eccles, D.R., Hunt, T., Mielke, E., Molnar, R., Shikaze, S., 2021. Standard Lithium LTD. Preliminary Economic Assessment of SW Arkansas Lithium Project (Technical Report No. E3580- RP- 0200). Standard Lithium LTD, Vancouver, British Columbia.
- Brilian, V., Putra, S., Anniffari, A., Jasmine, S., 2024. Stepwise Development of a Geothermal Reservoir with Shallow Vapor-Dominated and Deep Liquid-Dominated Zones: A Hypothetical development Scenario of Mataloko Geothermal Field, Indonesia, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, pp. 271–297.
- Bröker, K., Ma, X., Gholizadeh Doonechaly, N., Rosskopf, M., Obermann, A., Rinaldi, A.P., Hertrich, M., Serbeto, F., Maurer, H., Wiemer, S., Giardini, D., 2024. Hydromechanical characterization of a fractured crystalline rock volume during multi-stage hydraulic stimulations at the BedrettoLab. Geothermics 124, 103126. https://doi.org/10.1016/j.geothermics.2024.103126
- Brownell, D.H., Garg, S.K., Pritchett, J.W., 1977. Governing equations for geothermal reservoirs. Water Resources Research 13, 929–934. https://doi.org/10.1029/WR013i006p00929
- Burke, L., Pearson, O., Kinney, S., 2020. New Method for Correcting Bottomhole Temperatures Acquired from Wireline Logging Measurements and Calibrated for the Onshore Gulf of Mexico Basin, U.S.A. (Open-File Report No. 2019–1143), Open-File Report. United States Geological Survey, Reston, Virginia.
- Burns, E.R., Deangelo, J., Williams, C.F., 2024. Updated Three-dimensional Temperature Maps for the Great Basin, USA, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 12.
- Cano, N.A., Céspedes, S., Redondo, J., Foo, G., Jaramillo, D., Martinez, D., Gutiérrez, M., Pataquiba, J., Rojas, J., Cortés, F.B., Franco, C.A., 2022. Power from Geothermal Resources as a Co-product of the Oil and Gas Industry: A Review. ACS Omega 7, 40603–40624. https://doi.org/10.1021/acsomega.2c04374
- Cao, J., Lye, J., Gonzalez, M.M., Magalhaes, M., 2024. Exploring the Synergy: Leveraging Oil and Gas Drilling Solutions for Enhanced Geothermal Drilling, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 9.
- Carbonari, R., Ton, D., Bonneville, A., Bour, D., Cladouhos, T., Garrison, G., Horne, R., Petty, S., Rallo, R., Schultz, A., Sã, C.F., 2021. First Year Report of EDGE Project: an International Research Coordination Network for Geothermal Drilling Optimization Supported by Deep Machine Learning and Cloud Based Data Aggregation, in: 46th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 11.
- Carr, T.R., Carney, B., Panetta, B., Fathi, E., 2024. Evaluating Direct Deep-Use Geothermal Potential in the Appalachian Basin. Presented at the Image 2024, Society of Exploration Geophysicists, Houston, TX, p. 1.
- Carrillo-de La Cruz, J.L., Prol-Ledesma, R.M., Gabriel, G., 2021. Geostatistical mapping of the depth to the bottom of magnetic sources and heat flow estimations in Mexico. Geothermics 97, 102225. https://doi.org/10.1016/j.geothermics.2021.102225
- Carslaw, H.S., Jaeger, J.C., 1959. Conduction of heat in solids, 2. ed., repr. ed, Oxford science publications. Clarendon Press, Oxford.
- Casteel, J., Trazona, R., Melosh, G., Niggemann, K., Fairbank, B., 2010. A Preliminary Conceptual Model for the Blue Mountain Geothermal System, Humboldt County, Nevada, in: Proceedings World Geothermal Congresss. Presented at the World Geothermal Congress, Bali, Indonesia, p. 6.
- Caulk, R.A., Ghazanfari, E., Perdrial, J.N., Perdrial, N., 2016. Experimental investigation of fracture aperture and permeability change within Enhanced Geothermal Systems. Geothermics 62, 12–21. https://doi.org/10.1016/j.geothermics.2016.02.003
- Cavur, M., Moraga, J., Duzgun, H.S., Soydan, H., Jin, G., 2021. The DInSAR Analysis with Machine Learning for Delineating Geothermal Sites at the Brady Geothermal Field, in: 46th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 11.
- Chae, B., Ichikawa, I., Jeong, G., Seo, Y., 2003. Aperture of Granite Fracture and Effects for Fluid Flow. materials Science Research International 9, 8.
- Chen, Y., Voskov, D., Daniilidis, A., 2024. Open-source Simulation Study for Direct Use Geothermal Systems, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 7.
- Chong, Q., Wang, J., Gates, I.D., 2022. Evaluation of closed-loop U-Tube deep borehole heat exchanger in the Basal Cambrian Sandstone formation, Alberta, Canada. Geotherm Energy 10, 21. https://doi.org/10.1186/s40517-022-00229-z
- Christi, L.F., Sass, I., Norden, B., Blöcher, G., Zimmermann, G., Hofmann, H., 2025. Repurposing of hydrocarbon wells for Enhanced Geothermal System (EGS) development. Geothermics 128, 103268. https://doi.org/10.1016/j.geothermics.2025.103268
- Clauser, C., Huenges, E., 1995. Thermal Conductivity of Rocks and Minerals, in: Ahrens, T.J. (Ed.), AGU Reference Shelf. American Geophysical Union, Washington, D. C., pp. 105–126. https://doi.org/10.1029/RF003p0105
- Coal and Water Pollution | Union of Concerned Scientists [WWW Document], n.d. URL https://www.ucsusa.org/resources/coal-and-water-pollution (accessed 8.24.24).
- Collins, A.G., 1974. Geochemistry of Liquids, Gases, and Rocks From the Smackover Formation (Report of Investigations No. 7897). United States Geological Survey, Pittsburgh, Pennsylvania.
- Comlan Fannou, J.-L., Rousseau, C., Lamarche, L., Kajl, S., 2015. A comparative performance study of a direct expansion geothermal evaporator using R410A and R407C as refrigerant alternatives to R22. Applied Thermal Engineering 82, 306–317. https://doi.org/10.1016/j.applthermaleng.2015.02.079
- Comlan Fannou, J.-L., Rousseau, C., Lamarche, L., Kajl, S., 2014. Modeling of a direct expansion geothermal heat pump using artificial neural networks. Energy and Buildings 81, 381–390. https://doi.org/10.1016/j.enbuild.2014.06.040
- Correa, R.T., Vidotti, R.M., Guedes, V.J.C.B., Scandolara, J.E., 2022. Mapping the Thermal Structure of the Amazon Craton to Constrain the Tectonic Domains. JGR Solid Earth 127, e2021JB023025. https://doi.org/10.1029/2021JB023025
- Crain, K.D., Chang, J.C., 2018. Elevation Map of the Top of the Crystalline Basement in Oklahoma and Surrounding States (Open-File Report No. 1–2018). Norman, Oklahoma.
- Croucher, A.E., O’Sullivan, M.J., 2008. Application of the computer code TOUGH2 to the simulation of supercritical conditions in geothermal systems. Geothermics 37, 622–634. https://doi.org/10.1016/j.geothermics.2008.03.005
- crowd-sourced, 2025. Geothermal Engineering.
- Cumming, W., 2016. Resource Capacity Estimation Using Lognormal Power Density from Producing Fields and Area from Resource Conceptual Models; Advantages, Pitfalls and Remedies, in: 41st Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 7.
- Dake, L.P., 1978. Fundamentals of reservoir engineering, Developments in petroleum science. Elsevier Scientific Pub. Co. ; distributors for the U.S. and Canada Elsevier North-Holland, Amsterdam ; New York : New York.
- Dalianas, K., Walsh, S., 2017. A Numerical Method for Predicting Thermophysical Properties of Complex Chloride-Dominated Brines, in: 39th New Zealand Geothermal Workshop. International Geothermal Association, Auckland, New Zealand.
- Darton, N.H., 1920. Geothermal data of the United States, including many original determinations of underground temperature. United States Geological Survey, Washington. https://doi.org/10.3133/b701
- Datarails’ FP&A Glossary - Financial Terms Explained for FP&As [WWW Document], n.d. . Datarails. URL https://www.datarails.com/finance-glossary/ (accessed 10.10.24).
- de Jong, S., McCarthy, K., Pettit, W., 2023. Geothermal: the gift that could keep on giving. First Break 41, 77–82.
- De Pater, C.J. (Hans), Shaoul, J.R., 2019. Stimulation for geothermal wells in the Netherlands. Netherlands Journal of Geosciences 98, e11. https://doi.org/10.1017/njg.2019.8
- DeAngelo, J., Shervais, J.W., Glen, J.M., Nielson, D., Garg, S., Dobson, P.F., Gasperikova, E., Sonnenthal, E., Liberty, L.M., Siler, D.L., Evans, J.P., 2024. Geothermal Play Fairway Analysis, Part 2: GIS methodology. Geothermics 117, 102882. https://doi.org/10.1016/j.geothermics.2023.102882
- Deep Analysis of the Geothermal Literature Using Natural Language Processing, 2021.
- Degen, D., Cacace, M., Wellmann, F., 2024. Exploring Physics-Based Machine Learning for Geothermal Applications, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 9.
- Didana, Y.L., Thiel, S., Heinson, G., Boran, G., 2016. Magnetotelluric monitoring of hydraulic fracture stimulation at the Habanero Enhanced Geothermal System, Cooper Basin, South Australia. ASEG Extended Abstracts 2016, 1–9. https://doi.org/10.1071/ASEG2016ab123
- Dittman, G., 1977. Calculation of Brine Properties. Lawrence Livermore Laboratory.
- DLMF: NIST Digital Library of Mathematical Functions [WWW Document], n.d. URL https://dlmf.nist.gov/ (accessed 11.6.24).
- Dowdle, W.L., Cobb, W.M., 1975. Static Formation Temperature From Well Logs - An Empirical Method. Journal of Petroleum Technology 27, 1326–1330. https://doi.org/10.2118/5036-PA
- Drenth, B., 2014. Geophysical Expression of a Buried Niobium and Rare Earth Element Deposit: The Elk Creek Carbonatite, Nebraska, USA. Interpretation 2, SJ169–SJ179. https://doi.org/10.1190/INT-2014-0002.1
- Dutta, A., Wanniarachchige, P., Adhikary, R., Deb, D., Kulkarni, S., 2024. Investigations of Geothermal Energy Production in Coal fires Affected Jharia Basin, India, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 7.
- Economides, M.J., Deimbacher, F.X., Brand, C.W., Heinemann, Z.E., 1991. Comprehensive Simulation of Horizontal-Well Performance. SPE Formation Evaluation 6, 418–426. https://doi.org/10.2118/20717-PA
- Edwardson, M.J., Girner, H.M., Parkison, H.R., Williams, C.D., Matthews, C.S., 1962. Calculation of Formation Temperature Disturbances Caused by Mud Circulation. Journal of Petroleum Technology 14, 416–426. https://doi.org/10.2118/124-PA
- Egert, R., Meng, C., Fournier, A., Jin, W., Geopower, E., 2024. A Novel Workflow for Coupled Simulation of Hydraulic Stimulation with Simultaneous Injection of Proppant, in: 49th Workshop on Geothermal Reservoir Engineering. Presented at the 49th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford California, p. 11.
- El-Sadi, K., Gierke, B., Howard, E., Gradl, C., 2024. Review of Drilling Performance in a Horizontal EGS Development, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 6.
- Enhanced Geothermal Shot [WWW Document], n.d. . Energy.gov. URL https://www.energy.gov/eere/geothermal/enhanced-geothermal-shot (accessed 10.10.24).
- Esmaeilpour, M., Gholamikorzani, M., Kohl, T., 2021. Performance Analyses of Deep Closed-loop U-shaped Heat Exchanger System with a Long Horizontal Extension, in: 46th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 8.
- Ewing, T.E., Galloway, W.E., 2019. Evolution of the Northern Gulf of Mexico Sedimentary Basin, in: The Sedimentary Basins of the United States and Canada. Elsevier, pp. 627–694. https://doi.org/10.1016/B978-0-444-63895-3.00016-4
- Falquez, J., 2025a. Smackover Dataset File for SW AR (Thesis, Falquez).
- Falquez, J., 2025b. Smackover Formation Top Structure Map (Subsea and Measured Depth).
- Farmer, S., 2025. IADC Geothermal Well Classification. International Assoc of Drilling Contractors (IADC), Houston, TX.
- Fei, F., Wang, C., Cusini, M., Frash, L.P., Kroll, K.A., 2024. Modeling of Diagnostic Fracture Injection Tests for In Situ Stress Characterization of the Utah FORGE Reservoir, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 11.
- Feigl, K., Tung, S., Guo, H., Cunningham, E., Hampton, J., Kleich, S., Jahnke, B., Heath, B., Roland, C., Folsom, M., Akerley, J., Cusini, M., Sherman, C., Warren, I., Kreemer, C., Sone, H., Cardiff, M., Lord, N., Thurber, C., Wang, H., 2022. Overview and Preliminary Results for the WHOLESCALE project at San Emidio, Nevada, U.S., in: 47th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 22.
- Fercho, S., Matson, G., Mcconville, E., Rhodes, G., Jordan, R., Norbeck, J., 2024. Geology, Temperature, Geophysics, Stress Orientations, and Natural Fracturing in the Milford Valley, UT Informed by the Drilling Results of the First Horizontal Wells at the Cape Modern Geothermal Project, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 11.
- Fercho, S., Norbeck, J., Dadi, S., Matson, G., Borell, J., Mcconville, E., Webb, S., Bowie, C., Rhodes, G., 2025. Update on the Geology, Temperature, Fracturing, and Resource Potential at the Cape Geothermal Project Informed by Data Acquired from the Drilling of Additional Horizontal EGS Wells, in: 50th Workshop on Geothermal Reservoir Engineering. Presented at the Stanford Geothermal Workshop, Stanford University, Stanford California, p. 12.
- Fercho, S., Norbeck, J., Mcconville, E., Hinz, N., Wallis, I., Titov, A., Agarwal, S., Dadi, S., Gradl, C., Baca, H., Eddy, E., Lang, C., Voller, K., Latimer, T., 2023. Geology, State of Stress, and Heat in Place for a Horizontal Well Geothermal Development Project at Blue Mountain, Nevada, in: 48th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 16.
- File:Post-Glacial Sea Level.png - Wikipedia [WWW Document], n.d. URL https://commons.wikimedia.org/wiki/File:Post-Glacial_Sea_Level.png (accessed 8.22.24).
- Finnila, A., 2024. Updated Reference Discrete Fracture Network Model at Utah FORGE, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 29.
- Folsom, M., Winn, C., Milton, A., Zimmerman, J., Kraal, K., Nale, S., Huang, W.-C., Schwering, P., 2024. An Early-Stage Exploration Update on the Grover Point Blind Geothermal System in Dixie Valley, Nevada: Highlights of Geophysics Results and Conceptual Modeling, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 17.
- Foote, E.N., 1856. Circumstances affecting the Heat of the Sun’s Rays. American Journal of Science and Arts, Second 22, 2.
- Forrest, J., Marcucci, E., Scott, P., 2007. Geothermal Gradients and Subsurface Temperatures in the Northern Gulf of Mexico 55, 233–248.
- Fox, D., 2023. xofbd/discrete-fracture-network [WWW Document]. xofbd/discrete-fracture-network. URL https://github.com/xofbd/discrete-fracture-network (accessed 11.10.24).
- Fox, D.B., Koch, D.L., Tester, J.W., 2016. An analytical thermohydraulic model for discretely fractured geothermal reservoirs. Water Resources Research 52, 6792–6817. https://doi.org/10.1002/2016WR018666
- Francke, H., Kraume, M., Saadat, A., 2013. Thermal-hydraulic measurements and modelling of the brine circuit in a geothermal well. Environmental Earth Science 70, 3481–3495. https://doi.org/10.1007/s12665-013-2612-8
- Francke, H., Thorade, M., 2010. Density and viscosity of brine: An overview from a process engineers perspective. Chemie der Erde 70, 23–32. https://doi.org/10.1016/j.chemer.2010.05.015
- Frey, M., Bär, K., Stober, I., Reinecker, J., Van Der Vaart, J., Sass, I., 2022. Assessment of deep geothermal research and development in the Upper Rhine Graben. Geotherm Energy 10, 18. https://doi.org/10.1186/s40517-022-00226-2
- Frey, M., Van Der Vaart, J., Bär, K., Bossennec, C., Calcagno, P., Dezayes, C., Sass, I., 2023. Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben. Nat Resour Res 32, 213–234. https://doi.org/10.1007/s11053-022-10138-4
- Fu, W., Damjanac, B., Radakovic-Guzina, Z., Finnila, A., Podgorney, R., Mclennan, J., 2024. Near-Wellbore DEM Model of Hydraulic Fracture Initiation for Utah FORGE Site, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 9.
- Fuchs, S., Balling, N., Förster, A., 2015. Calculation of thermal conductivity, thermal diffusivity and specific heat capacity of sedimentary rocks using petrophysical well logs. Geophysical Journal International 203, 1977–2000. https://doi.org/10.1093/gji/ggv403
- Fuchs, S., Förster, H., Norden, B., Balling, N., Miele, R., Heckenbach, E., Förster, A., 2021. The Thermal Diffusivity of Sedimentary Rocks: Empirical Validation of a Physically Based α − φ Relation. JGR Solid Earth 126, e2020JB020595. https://doi.org/10.1029/2020JB020595
- Fulton, P., Clairmont, R., Fucher, S., Pinilla, D., Purwamaska, I., Fresonke, M., Puthur, R., Torres, J., Heaton, T., Beckers, K., Beyers, S., Bland, W.B.-K.R., 2024. Subsurface Insights from the Cornell University Borehole Observatory (CUBO): A 3km Deep Exploratory Well for Advancing Earth Source Heat Deep Direct-Use Geothermal for District Heating, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 12.
- Gailler, L.-S., Lénat, J.-F., Blakely, R.J., 2016. Depth to Curie temperature or bottom of the magnetic sources in the volcanic zone of la Réunion hot spot. Journal of Volcanology and Geothermal Research 324, 169–178. https://doi.org/10.1016/j.jvolgeores.2016.06.005
- Galieti, L., Merlo, U., Filippini, S., Servi, C.D., Colonna, P., Silva, P., Bombarda, P., Alfani, D., 2024. Techno-Economic Comparison of Different Air Cooled Condenser Technologies for Geothermal ORC Applications, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 13.
- Gao, M., Zhang, C., Oh, J., 2023. Assessments of the effects of various fracture surface morphology on single fracture flow: A review. International Journal of Mining Science and Technology 33, 1–29. https://doi.org/10.1016/j.ijmst.2022.07.005
- Garcia, A., Santoyo, E., Espinosa, G., Hernandez, I., Gutierrez, H., 1998. Estimation of Temperatures in Geothermal Wells During Circulation and Shut-in in the Presence of Lost Circulation. Transport in Porous Media 33, 103–127. https://doi.org/10.1023/A:1006545610080
- Gard, M., Hasterok, D., 2021. A global Curie depth model utilising the equivalent source magnetic dipole method. Physics of the Earth and Planetary Interiors 313, 106672. https://doi.org/10.1016/j.pepi.2021.106672
- Gascuel, V., Bédard, K., Comeau, F.-A., Raymond, J., Malo, M., 2020. Geothermal resource assessment of remote sedimentary basins with sparse data: lessons learned from Anticosti Island, Canada. Geotherm Energy 8, 3. https://doi.org/10.1186/s40517-020-0156-1
- Gasperikova, E., Cumming, W., 2020. How geophysics can help the geothermal industry, in: SEG Technical Program Expanded Abstracts 2020. Presented at the SEG Technical Program Expanded Abstracts 2020, Society of Exploration Geophysicists, Virtual, pp. 3379–3383. https://doi.org/10.1190/segam2020-3425875.1
- Gay, F., Dworzanowski, M., Williams, R., Mutschler, C., Johnson, D., Campbell, C., 2023. South West Arkansas Project Pre-Feasibility Study, Lewisville, Lafayette County, AR (Technical Report). Standard Lithium LTD, Vancouver, British Columbia.
- Gelman, S.E., Burns, E.R., 2025. Three-dimensional temperature maps of the Williston Basin, USA: Implications for deep hot sedimentary and enhanced geothermal resources. Geothermics 125, 103196. https://doi.org/10.1016/j.geothermics.2024.103196
- Ghassemi, A., Ye, Z., Ratnayake, M., 2024. The Role of Thermo-poroelastic Effects on Drilling Induced Fractures in the Utah FORGE Well 16A(78)-32, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 8.
- Giordano, N., Lamarche, L., Raymond, J., 2021. Evaluation of Subsurface Heat Capacity through Oscillatory Thermal Response Tests. Energies 14. https://doi.org/10.3390/en14185791
- Glover, P.W.J., 2015. Geophysical Properties of the Near Surface Earth: Electrical Properties, in: Schubert, G., Slater, L. (Eds.), Treatise on Geophysics. Elsevier Science, Amsterdam, Netherlands, p. 47.
- Gold, A., Davalos-Elizondo, E., Kutum, K., 2024. Evolution of a Geological Model for Co-Producing Electricity at the Blackburn Oil Field, Nevada, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 16.
- Gonzalez, M.F., Kristjansson, B.R., Hjorleifsdottir, V., 2022. Fractures System Characterization for the Low-Temperature Laugaland Geothermal Field, in: 47th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 12.
- Gourcerol, B., Sanjuan, B., Millot, R., Rettenmaier, D., Jeandel, E., Genter, A., Bosia, C., Rombaut, A., 2024. Atlas of lithium geothermal fluids in Europe. Geothermics 119, 102956. https://doi.org/10.1016/j.geothermics.2024.102956
- Goutorbe, B., Lucazeau, F., Bonneville, A., 2007. Comparison of several BHT correction methods: a case study on an Australian data set. Geophysical Journal International 170, 913–922. https://doi.org/10.1111/j.1365-246X.2007.03403.x
- Gringarten, A.C., Witherspoon, P.A., Ohnishi, Y., 1975. Theory of heat extraction from fractured hot dry rock. J. Geophys. Res. 80, 1120–1124. https://doi.org/10.1029/JB080i008p01120
- Grubert, E., 2020. Same-plant trends in capacity factor and heat rate for US power plants, 2001–2018. IOPSciNotes 1, 024007. https://doi.org/10.1088/2633-1357/abb9f1
- Guccione, M., 1993. Geologic History of Arkansas Through Time and Space.
- Gudmundsdótti, V., Steingrímsson, B., 2018. Geothermal Well Logs: The Role Of Spinner, Temperature And Pressure Logging During Drilling In Locating Feed Zones In Wells.
- Gudmundsdottir, V., Steingrimsson, B., 2018. Geothermal Well Logs: The Role Of Spinner, Temperature And Pressure Logging During Drilling In Locating Feed Zones In Wells. Presented at the SDG Short Course III on Geothermal Reservoir Characterization: Well Logging, Well Testing and Chemical Analyses, United Nations University, Geothermal Training Program, Santa Tecla, El Salvador, p. 8.
- Guffanti, M., Nathenson, M., 1981. Temperature-depth Data for Selected Deep Drill Holes in the United States Obtained Using Maximum Thermometers (Open-File Report No. 81–555), Open-File Report. United States Geological Survey.
- Gyimah, E., Tomomewo, O., Gosnold, W., Porlles, J., Vashaghian, S., 2024. Probabilistic Assessment and Uncertainty Quantification of a Geothermal Resource, Red River Formation, North Dakota, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 8.
- Hackstein, F.V., Madlener, R., 2021. Sustainable operation of geothermal power plants: why economics matters. Geotherm Energy 9, 10. https://doi.org/10.1186/s40517-021-00183-2
- Hajto, M., Przelaskowska, A., Machowski, G., Drabik, K., Ząbek, G., 2020. Indirect Methods for Validating Shallow Geothermal Potential Using Advanced Laboratory Measurements from a Regional to Local Scale—A Case Study from Poland. Energies 13, 5515. https://doi.org/10.3390/en13205515
- Han, R., Yang, Z., Yang, S., Zhang, B., 2020. Experimental study on isobaric specific heat capacity of subcritical and supercritical fluids using flow calorimetry. Measurement: Sensors 10–12, 100016. https://doi.org/10.1016/j.measen.2020.100016
- Hanor, J.S., Mcintosh, J.C., 2007. Diverse origins and timing of formation of basinal brines in the Gulf of Mexico sedimentary basin. Geofluids 11.
- Hanson, D., Mills, C., Cannon, C., 2021. Depth to Crystalline Basement Map (Open-File Report No. 2020 2000).
- Harrison, W., Luza, K., Prater, M.L., Cheung, P., 1981. Geothermal Resource Assessment in Oklahoma. Oklahoma Geological Survey, Norman, Oklahoma.
- Hart, D., Tinjum, J., Fratta, D., Thomas, L., Carew, E., 2022. Radiators or Reservoirs: Heat Budgets in District-Scale Ground-Source Geothermal Exchange Fields, in: 47th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 10.
- Heeg, E., Tinjum, J., Fratta, D., Attri, S.D., Hart, D., Luebbe, A., 2024. Quantifying the Long-term Performance of a District-scale Geothermal Exchange Field, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 10.
- Henrikson, A., Chapman, D.S., 2002. Terrestrial Heat Flow in Utah. University of Utah.
- Hirono, T., Hamada, Y., 2010. Specific heat capacity and thermal diffusivity and their temperature dependencies in a rock sample from adjacent to the Taiwan Chelungpu fault. Journal of Geophysical Research 115. https://doi.org/10.1029/2009JB006816
- Holmes, R.C., 2024. Power Density Geothermal Resource Estimation Revisited, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 9.
- Holmgren, J., Werner, M., 2021. Raspberry Shake Instruments Provide Initial Ground-Motion Assessment of the Induced Seismicity at the United Downs Deep Geothermal Power Project in Cornwall, United Kingdom. The Seismic Record 1, 27–34. https://doi.org/10.1785/0320210010
- Hönisch, B., Ridgwell, A., Schmidt, D.N., Thomas, E., Gibbs, S.J., Sluijs, A., Zeebe, R., Kump, L., Martindale, R.C., Greene, S.E., Kiessling, W., Ries, J., Zachos, J.C., Royer, D.L., Barker, S., Marchitto, T.M., Moyer, R., Pelejero, C., Ziveri, P., Foster, G.L., Williams, B., 2012. The Geological Record of Ocean Acidification. Science 335, 1058–1063. https://doi.org/10.1126/science.1208277
- Horne, R., Genter, A., McClure, M., Ellsworth, W., Norbeck, J., Schill, E., 2025. Enhanced geothermal systems for clean firm energy generation. Nat. Rev. Clean Technol. https://doi.org/10.1038/s44359-024-00019-9
- Hosman, R.L., 1996. Regional Stratigraphic and Subsurface Geology of Cenozoic Deposits, Gulf Coastal Plain, South-Central United Stated (No. 1416- G), Regional Aquifer-System Analysis- Gulf Coastal Plain. United States Geological Survey.
- How much carbon dioxide is produced per kilowatthour of U.S. electricity generation? [WWW Document], n.d. . Frequently Asked Questions (FAQs) - U.S. Energy Information Administration (EIA). URL https://www.eia.gov/tools/faqs/faq.php (accessed 12.26.24).
- Hu, Z., Vivias, C., Salehi, S., Khankishiyev, O., 2024. Machine Learning-Based Rock Facies Prediction Using Geothermal Data: A Comparative Analysis of Algorithms, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 10.
- Hudson, T., Kettlety, T., Kendall, J.-M., O’Toole, T., Jupe, A., Shail, R., Grand, A., 2024. Seismic Node Arrays for Enhanced Understanding and Monitoring of Geothermal Systems. The Seismic Record 4, 161–171. https://doi.org/10.1785/0320240019
- Ibrahim, A., Saada, S.A., Mickus, K., Abdelrahman, K., Khedr, F.I., 2022. Comparative study of estimating the Curie point depth and heat flow using potential magnetic data. Open Geosciences 14, 462–480. https://doi.org/10.1515/geo-2022-0378
- Iñigo, A., Margarita, D.G., Cristina, D.S., Paloma, P., 2019. Geothermal Energy Use, Country Update for Spain, in: European Geothermal Congress 2019. European Geothermal Congress, Den Haag, The Netherlands, p. 9.
- Iorio, M., Punzo, M., Carotenuto, A., Cavuoto, G., Corniello, A., Di Fiore, V., Donnarumma, G., Fedi, M., Massarotti, N., Pelosi, N., Tarallo, D., Milano, M., 2024. Shallow geothermal field multidisciplinary exploration: New data from Campi Flegrei caldera (CFc) for low—middle enthalpy resource exploitation. Geothermics 121, 103049. https://doi.org/10.1016/j.geothermics.2024.103049
- Ito, T., Ruiz, C., 2017. Geothermal power: technology brief. International Renewable Energy Agency, Abu Dhabi.
- Iyare, U.C., Frash, L.P., Kc, B., Meng, M., Kroll, K., Smith, M.M., Davila, G., Madenova, Y., Marina, O., Carey, J.W., 2024. Measurements of Thermo-Hydro-Mechanical-Chemical Coupling in Granite Shear Fractures at FORGE Using the Triaxial Direct-Shear Test Method, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 12.
- Jasim, A., Hemmings, B., Mayer, K., Scheu, B., 2018. Groundwater flow and volcanic unrest, in: Gottsmann, J., Neuberg, J., Scheu, B. (Eds.), Volcanic Unrest, Advances in Volcanology. Springer International Publishing, Cham, pp. 83–99. https://doi.org/10.1007/11157_2018_33
- Jaya, M.S., Shapiro, S., Kristindóttir, L., Bruhn, D., Milsch, H., Spangenberg, E., 2010. Temperature-Dependence of Seismic Properties in Geothermal Core Samples at In-Situ Reservoir Conditions, in: World Geothermal Congress 2010. World Geothermal Congress, Bali, Indonesia, p. 8.
- JIMENEZ, C.O.P., 2024. cpocasangre/gppeval.
- Jones, B.A., 2022. Untapped Geothermal Energy: An Active Negotiation Between Incumbents and Challengers Within the Geothermal Community, in: 47th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 5.
- Jones, C., Simmons, S., Moore, J., 2024. Geology of the Utah Frontier Observatory for Research in Geothermal Energy (FORGE) Enhanced Geothermal System (EGS) Site. Geothermics 122, 103054. https://doi.org/10.1016/j.geothermics.2024.103054
- Joshi, S.D., 1988. Augmentation of Well Productivity With Slant and Horizontal Wells. Journal of Petroleum Technology 40, 729–739. https://doi.org/10.2118/15375-PA
- Jusri, T., Bertani, R., Buske, S., 2019. Advanced three‐dimensional seismic imaging of deep supercritical geothermal rocks in Southern Tuscany. Geophysical Prospecting 67, 298–316. https://doi.org/10.1111/1365-2478.12723
- Kamila, Z., Kaya, E., Zarrouk, S.J., 2021. Reinjection in geothermal fields: An updated worldwide review 2020. Geothermics 89, 101970. https://doi.org/10.1016/j.geothermics.2020.101970
- Karagöz, M.E., 2023. IPRvsVLP/fluidproperties.py at main · mek27605/IPRvsVLP · GitHub [WWW Document]. IPRvsVLP. URL https://github.com/mek27605/IPRvsVLP/blob/main/fluidproperties.py (accessed 11.18.24).
- Kassa, M., Alemu, A., Muluneh, A., 2022. Determination of Conrad and Curie point depth relationship with the variations in lithospheric structure, geothermal gradient and heat flow beneath the central main Ethiopian rift. Heliyon 8, e11735. https://doi.org/10.1016/j.heliyon.2022.e11735
- Kc, B., Frash, L.P., Ahmed, B., 2024. Minimum Proppant Pack Conductivity for Economic Multi-stage Enhanced Geothermal Systems, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 8.
- Kc, B., Kamali-Asl, A., Ghazanfari, E., Perdrial, N., Cladouhos, T.T., 2019. Investigation of Fracture Permeability Evolution in Phyllite Reservoir Rock Specimen from Blue Mountain Geothermal Field, in: 44th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford California, p. 8.
- Kelkar, S., WoldeGabriel, G., Rehfeldt, K., 2016. Lessons Learned from the Pioneering Hot Dry Rock Project at Fenton Hill, USA. Geothermics 63, 5–14.
- Khankishiyev, O., Salehi, S., Hasanov, G., Hu, Z., 2024. Application of Distributed Temperature Sensing (DTS) in Geothermal Wells, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 12.
- Kim, T., Avouac, J.-P., 2024. Factors Controlling Rate and Magnitude of Seismicity Induced by Geothermal Well Stimulation, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 13.
- King, B., Ricks, W., Pastorek, N., 2025. The Potential for Geothermal Energy to Meet Growing Data Center Electricity Demand (Research). Rhodium Group, New York City, New York.
- Kirkby, A., Funnell, R., Scadden, P., Seward, A., Sagar, M., Mortimer, N., Sanders, F., 2024. Towards a New Zealand Heat Flow Model, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 6.
- Kneafsey, T., Dobson, P., Blankenship, D., Schwering, P., White, M., Morris, J.P., Huang, L., Johnson, T., Burghardt, J., Mattson, E., Neupane, G., Strickland, C., Knox, H., Vermuel, V., Ajo-Franklin, J., Fu, P., Roggenthen, W., Doe, T., Schoenball, M., Hopp, C., Tribaldos, V.R., Ingraham, M., Guglielmi, Y., Ulrich, C., Wood, T., Frash, L., Pyatina, T., Vandine, G., Smith, M., Horne, R., McClure, M., Singh, A., Weers, J., Robertson, M., 2025. The EGS Collab project: Outcomes and lessons learned from hydraulic fracture stimulations in crystalline rock at 1.25 and 1.5 km depth. Geothermics 126, 103178. https://doi.org/10.1016/j.geothermics.2024.103178
- Knierim, K.J., Blondes, M.S., Masterson, A., Freeman, P., McDevitt, B., Herzberg, A., Li, P., Mills, C., Doolan, C., Jubb, A.M., Ausbrooks, S.M., Chenault, J., 2024. Evaluation of the lithium resource in the Smackover Formation brines of southern Arkansas using machine learning. Sci. Adv. 10, eadp8149. https://doi.org/10.1126/sciadv.adp8149
- Kobayashi, K., Taboco, K., Bermejo, J., Almanzor, A., Dacillo, D., 2024. Mahanagdong Reservoir Response to the Termination of Infield Cold Reinjection, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 6.
- Kolo, I., Brown, C.S., Falcone, G., 2023. Thermal Power from a Notional 6km Deep Borehole Heat Exchanger in Glasgow, in: 48th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 10.
- Kshirsagar, A., Sanghavi, P., 2022. Geothermal, Oil and Gas Well Subsurface Temperature Prediction Employing Machine Learning, in: 47th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 11.
- Kujbus, A., Talamon, A., 2024. Preparing Geothermal Energy Profiles in the Pannonian Basin in Hungary, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 9.
- Kummerow, J., Raab, S., 2015. Temperature dependence of electrical resistivity - Part I: Experimental investigations of hydrothermal fluids. Energy Procedia 76, 240–246.
- Kutasov, I.M., Eppelbaum, L.V., 2005. Determination of formation temperature from bottom-hole temperature logs—a generalized Horner method. J. Geophys. Eng. 2, 90–96. https://doi.org/10.1088/1742-2132/2/2/002
- Lacazette, A., Cumella, S., Matt, V., Cottrell, M., Karimi, S., Marsh, B., Chmela, W., 2024. Using Petroleum Industry Data to Locate, Characterize, and Simulate a Hot Sedimentary Aquifer Geothermal Prospect, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 12.
- Laliberté, M., Cooper, W.E., 2004. Model for Calculating the Density of Aqueous Electrolyte Solutions. J. Chem. Eng. Data 49, 1141–1151. https://doi.org/10.1021/je0498659
- Lamarche, L., 2023. Fundamentals of Geothermal Heat Pump Systems: Design and Application, 1st ed. Springer Cham.
- Lamarche, L., 2013. Short-term behavior of classical analytic solutions for the design of ground-source heat pumps. Renewable Energy 57, 171–180. https://doi.org/10.1016/j.renene.2013.01.045
- Lamarche, L., 2011. Analytical g-function for inclined boreholes in ground-source heat pump systems. Geothermics 40, 241–249. https://doi.org/10.1016/j.geothermics.2011.07.006
- Lamarche, L., 2009. A fast algorithm for the hourly simulations of ground-source heat pumps using arbitrary response factors. Renewable Energy 34, 2252–2258. https://doi.org/10.1016/j.renene.2009.02.010
- Lamarche, L., Beauchamp, B., 2007a. New solutions for the short-time analysis of geothermal vertical boreholes. International Journal of Heat and Mass Transfer 50, 1408–1419. https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.007
- Lamarche, L., Beauchamp, B., 2007b. A New Contribution to the Finite Line-Source Model for Geothermal Boreholes. Energy and Buildings 39, 188–198. https://doi.org/10.1016/j.enbuild.2006.06.003
- Lamarche, L., Kajl, S., Beauchamp, B., 2015. A Review of Methods to Evaluate Borehole Thermal Resistances in Geothermal Heat-Pump Systems. Geothermic 39, 187–200. https://doi.org/10.1016/j.geothermics.2010.03.003
- Lamarche, L., Raymond, J., 2013. Simulation of thermal response tests in a layered subsurface. Applied Energy 109, 293–301. https://doi.org/10.1016/j.apenergy.2013.01.033
- Larasati, T., Ivana, J., Oktaviani, A., Fadhillah, F., Sahdarani, D., Pujiastuti, T., 2024. Revisiting Galunggung Geothermal Field through geoscience perspective, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, pp. 353–359.
- Lashin, A., Arifi, N.A., Chandrasekharam, D., Albassam, A., Rehman, S., Pipan, M., 2015. Geothermal Energy Resources of Saudi Arabia: Country Update, in: World Geothermal Congress 2015. World Geothermal Congress, Melbourne, Australia, p. 15.
- Lawless, J., 2010. Geothermal Lexicon for Resources and Reserves Definition and Reporting Edition 2 (The Australian Geothermal Reporting Code Committee). Australian Geothermal Energy Group.
- Layugan, D.B., Rigor, D.M., 2005. Magnetotelluric (MT) Resistivity Surveys in Various Geothermal Systems in Central Philippines, in: World Geothermal Congress 2005. World Geothermal Congress, Antalya, Turkey, p. 11.
- Lee, S.H., Ghassemi, A., 2024. Numerical Modeling of Stimulation and Circulation in Utah FORGE Wells, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 11.
- Lei, H., 2022. Performance Comparison of H2O and CO2 as the Working Fluid in Coupled Wellbore/Reservoir Systems for Geothermal Heat Extraction. Front. Earth Sci. 10, 819778. https://doi.org/10.3389/feart.2022.819778
- Levine, A., Martinez Smith, F., Buchanan, H., 2023. Topics and Considerations for Developing State Geothermal Regulations (Technical Report No. NREL/TP--6A20-86985, 2000950, MainId:87760). National Renewable Energy Laboratory, Golden, Colorado. https://doi.org/10.2172/2000950
- Li, C.-F., Lu, Y., Wang, J., 2017. A global reference model of Curie-point depths based on EMAG2. Sci Rep 7, 45129. https://doi.org/10.1038/srep45129
- Li, P., 2025. Smackover Formation Tops by County (AGS).
- Li, P., 2023. Core Plug Analysis of the Upper Smackover Formation in Lafayette County, Southwestern Arkansas (No. 2023– 02). Office of State Geologist, North Little Rock, Arkansas.
- Libbey, R.B., Williams-Jones, A.E., Melosh, B.L., Backeberg, N.R., 2015. Characterization of geothermal activity along the North American-Caribbean Plate boundary in Guatemala: The Joaquina geothermal field. Geothermics 56, 17.
- Lichti, K.A., Ghaziof, S., Julian, R., Mountain, B.W., 2024. Geochemical modelling of heavy metal deposition in a geothermal heat exchanger. Geothermics 118, 102884. https://doi.org/10.1016/j.geothermics.2023.102884
- Liner, C., 2025. Concepts of Modern Enhanced Geothermal Power Systems.
- Liner, C.L., Liner, C.L., 2004. Elements of 3D seismology, 2nd ed. ed. PennWell, Tulsa, Okla.
- Liu, B., Kumar, D., Ghassemi, A., 2025. Modeling proppant transport and settlement in 3D fracture networks in geothermal reservoirs. Geothermics 125, 103176. https://doi.org/10.1016/j.geothermics.2024.103176
- Liu, C., Li, K., Chen, Y., Jia, L., Ma, D., 2016. Static Formation Temperature Prediction Based on Bottom Hole Temperature. Energies 9, 646. https://doi.org/10.3390/en9080646
- Loeb, J., Poupon, A., 1965. Temperature Logs in Production and Injection Wells. Presented at the 27th Meeting of the European Association of Exploration Geophysicists, European Association of Exploration Geophysicists, Paris, France.
- Lund, J.W., Toth, A.N., 2021. Direct utilization of geothermal energy 2020 worldwide review. Geothermics 90, 101915. https://doi.org/10.1016/j.geothermics.2020.101915
- Lund, K., Box, S.E., Holm-Dnoma, C.. S., San Juan, C.A., Blakely, R.J., Saltus, R.W., Anderson, E.E., DeWitt, E.H., 2015. Basement Domain Map of the Conterminous United States and Alaska (No. 898), Data Series. United States Geological Survey.
- Luza, K.V., Harrison, W.E., Laguros, G.A., Prater, M.L., Cheung, P.K., 1984. Geothermal Resources and Temperature Gradients in Oklahoma.
- Ma, Y., Ajo-Franklin, J., Chamarczuk, M., Patterson, J., Zhu, R., Rodriguez, I.V., Podrasky, D., Coleman, T., Maldaner, C., 2025. Illuminating Geothermal Reservoir Structure: DAS Microseismic Reflection Imaging at Utah FORGE, in: 50th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford California, p. 7.
- Ma, Y., Eaton, D.W., Wang, C., Aklilu, A., 2023. Characterizing hydraulic fracture growth using distributed acoustic sensing-recorded microseismic reflections. GEOPHYSICS 88, WC47–WC57. https://doi.org/10.1190/geo2022-0607.1
- Malek, A., Adams, B., Rossi, E., Schiegg, H., Saar, M., 2021. Electric Power Generation, Specific Capital Cost, and Specific Power for Advanced Geothermal Systems (AGS), in: 46th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 12.
- Manche, C.J., Markello, J., Laya, J.C., Pope, M., Fritsche, K., Hill, K., 2025. Diagenetic and sequence stratigraphic controls on reservoir quality in the Upper Jurassic Smackover Formation, southern Arkansas, USA. Marine and Petroleum Geology 177, 107363. https://doi.org/10.1016/j.marpetgeo.2025.107363
- Mancini, E., Puckett, T.M., Parcell, W., Llinas, J.C., Kopaska-Merkel, D., Townsend, R., 2002. Basin Analysis of the Mississippi Interior Salt Basin and Petroleum System Modeling of the Jurassic Smackover Formation, Eastern Golf Coastal Plain Final Report and Topical Reports 5-8 on Smackover Petroleum System and Underdevelopment Reservoirs. United States Department of Energy, Tulsa, Oklahoma.
- Mancini, E.A., Blasingame, T.A., Archer, R., Panetta, B.J., Llinás, J.C., Haynes, C.D., Benson, D.J., 2004. Improving recovery from mature oil fields producing from carbonate reservoirs: Upper Jurassic Smackover Formation, Womack Hill field (eastern Gulf Coast, U.S.A.). Bulletin 88, 1629–1651. https://doi.org/10.1306/06210404037
- Mavko, G., Mukerji, T., Dvorkin, J., 2019. The rock physics handbook, Third edition. ed. Cambridge University Press, Cambridge, United Kingdom.
- Mccarthy, K., Pettitt, W., Engels, O., 2024. Geothermal Play Fairway Analysis (GPFA): A Texas/Gulf Coast Case Study, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 18.
- Mcclure, M.W., Irvin, R., England, K., Mclennan, J., 2024. Numerical Modeling of Hydraulic Stimulation and Long-Term Fluid Circulation at the Utah FORGE Project, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 18.
- McConville, E., 2023. Fervo’s Commercialization Plans for Enhanced Geothermal Systems (EGS).
- McKenna, J., Blackwell, D., Moyes, C., Patterson, P.D., 2005. Geothermal Electric Power Supply Possible from Gulf Coast, Midcontinent Oil Field Waters. Oil and Gas Journal 103, 35–40.
- McLean, M.L., Espinoza, D.N., 2023. Thermal destressing: Implications for short-circuiting in enhanced geothermal systems. Renewable Energy 202, 736–755. https://doi.org/10.1016/j.renene.2022.11.102
- Merbecks, T., Leal, A.M.M., Bombarda, P., Silva, P., Alfani, D., Saar, M.O., 2025. GeoProp: A thermophysical property modelling framework for single and two-phase geothermal geofluids. Geothermics 125, 103146. https://doi.org/10.1016/j.geothermics.2024.103146
- Merbecks, T., Leal, A.M.M., Bombarda, P., Silva, P., Alfani, D., Saar, M.O., 2024. GeoProp: A thermophysical property modelling framework for single and two-phase geothermal geofluids. Geothermics 125, 103146. https://doi.org/10.1016/j.geothermics.2024.103146
- Merey, Ş., 2020. Estimation of fracture pressure gradients in the shallow sediments of the Mediterranean Sea by using ODP Leg 160 and Leg 161 data. Journal of Petroleum Science and Engineering 191, 107307. https://doi.org/10.1016/j.petrol.2020.107307
- Meshalkin, Y., Shakirov, A., Popov, E., Koroteev, D., Gurbatova, I., 2020. Robust well-log based determination of rock thermal conductivity through machine learning. Geophysical Journal International 222, 978–988. https://doi.org/10.1093/gji/ggaa209
- Metric prefix [WWW Document], 2024. . Wikipedia. URL https://en.wikipedia.org/wiki/Metric_prefix (accessed 11.22.24).
- Middleton, M.F., 1982. Bottom-hole temperature stabilization with continued circulation of drilling mud. Geophysics 47, 1716–1723.
- Millar, C., Lightstone, M.F., Cotton, J.S., 2025. New guidelines for the application of the infinite line source method for thermal response tests on atypical borehole heat exchanger configurations. Geothermics 127, 103251. https://doi.org/10.1016/j.geothermics.2025.103251
- Mitjanas, G., Walsh, J.J., Roca, E., Alías, G., Queralt, P., Ledo, J., Piña-Varas, P., 2024. The importance of structural complexity in the localization of geothermal systems: A case study along the Vallès-Penedès Fault in the Catalan Coastal Ranges (NE Spain). Geothermics 116, 102855. https://doi.org/10.1016/j.geothermics.2023.102855
- Mochinaga, H., 2022. Machine Learning-Based Power Density Prediction for Binary Cycle Geothermal Power Generation in Japan, in: 47th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 7.
- Moldovanyi, E., Walter, L., 1992. Regional Trends in Water Chemistry, Smackover Formation, Southwest Arkansas: Geochemical and Physical Controls. The American Association of Petroleum Geologists Bulletin 76, 864–894. https://doi.org/10.1306/BDFF890C-1718-11D7-8645000102C1865D
- Mono, J.A., Ndougsa-Mbarga, T., Tarek, Y., Ngoh, J.D., Owono Amougou, O.U.I., 2018. Estimation of Curie-point depths, geothermal gradients and near-surface heat flow from spectral analysis of aeromagnetic data in the Loum – Minta area (Centre-East Cameroon). Egyptian Journal of Petroleum 27, 1291–1299. https://doi.org/10.1016/j.ejpe.2018.07.002
- Moore, C., Druckman, Y., 1981. Burial Diagenesis and Porosity Evolution, Upper Jurassic Smackover, Arkansas and Louisiana. AAPG Bulletin 65, 32. https://doi.org/10.1306/2F919995-16CE-11D7-8645000102C1865D
- Moorhead, M., 2024. Geochemical Analysis of Basement Rock as a Potential Metal Source in Mississippi Valley-Type Ores, Southern Midcontinent U.S.A. University of Arkansas, Fayetteville, Arkansas.
- Moradi, R., Cioccolanti, L., 2024. Modelling approaches of micro and small-scale organic Rankine cycle systems: A critical review. Applied Thermal Engineering 236, 121505. https://doi.org/10.1016/j.applthermaleng.2023.121505
- Mordensky, S., Lipor, J., Deangelo, J., Burns, E., Lindsey, C., 2022. Predicting Geothermal Favorability in the Western United States by Using Machine Learning: Addressing Challenges and Developing Solutions, in: 47th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 18.
- Morse, P., Feshbach, H., 1953. Methods of Theoretical Physics, first. ed, International Series in Pure and Applied Physics. McGraw-Hill, New York.
- Mueller, F., Steffen, B., Schmidt, T., 2024. Learning in geothermal power and heat generation – A German case study, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 9.
- Munday, L., Podgorney, R., 2024. Numerically Testing Conceptual Models of the Utah FORGE Reservoir Using July 2024 Circulation Test Data, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 7.
- Muskat, M., 1937. The flow of homogeneous fluids through porous media, 2nd printing 1946. ed. J. E. Edwards, Ann Arbor, Michigan.
- Nakata, N., Wu, S.-M., Hopp, C., Robertson, M., Dadi, S., 2024. Microseismicity Observation and Characterization at Cape Modern and Utah FORGE, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 8.
- Negraru, P.T., Blackwell, D.D., Erkan, K., 2008. Heat Flow and Geothermal Potential in the South-Central United States. Nat Resour Res 17, 227–243. https://doi.org/10.1007/s11053-008-9081-x
- NOAA, 2025. 10 year Annual Average Surface Temperature for Lafayette County, AR.
- Nondorf, L.M., 2013. Thermal conductivity, thermal gradient, and heat-flow estimations for the Smackover Formation, southwest Arkansas (Miscellaneous Publication No. 23). Arkansas Geological Survey, Little Rock, Arkansas. https://doi.org/10.1130/2016.2519(07)
- Norbeck, J., Latimer, T., 2023. Commercial-Scale Demonstration of a First-of-a-Kind Enhanced Geothermal System. EarthArXiv. https://doi.org/10.31223/X52X0B
- Norbeck, J., Latimer, T., Gradl, C., Agarwal, S., Dadi, S., Eddy, E., Fercho, S., Lang, C., Mcconville, E., Titov, A., Voller, K., Woitt, M., 2023. A Review of Drilling, Completion, and Stimulation of a Horizontal Geothermal Well System in North-Central Nevada, in: 48th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 25.
- Norbeck, J.H., McClure, M.W., Horne, R.N., 2018. Field observations at the Fenton Hill enhanced geothermal system test site support mixed-mechanism stimulation. Geothermics 74, 135–149. https://doi.org/10.1016/j.geothermics.2018.03.003
- Northern California Earthquake Data Center, 2014. Northern California Earthquake Data Center. https://doi.org/10.7932/NCEDC
- Nowak, T.J., 1953. The Estimation of Water Injection Profiles From Temperature Surveys. JPT 198, 203–212. https://doi.org/10.2118/953203-G
- Nugraha, R.P., O’Sullivan, J., O’Sullivan, M., Abdurachman, F., 2022. Geothermal Modelling: Industry Standard Practices, in: 47th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 12.
- Numbere, D., Brigham, W.E., Standing, M.B., 1977. Correlations for physical properties of Petroleum Reservoir Brines. Stanford University, Stanford, California.
- Núñez Demarco, P., Prezzi, C., Sánchez Bettucci, L., 2020. Review of Curie point depth determination through different spectral methods applied to magnetic data. Geophysical Journal International 224, 17–39. https://doi.org/10.1093/gji/ggaa361
- Nuño-Villanueva, N., Maté-González, M.Á., Nieto, I.M., Blázquez, C.S., Martín, A.F., González-Aguilera, D., 2023. GIS-based selection methodology for viable District Heating areas in Castilla y León, Spain. Geothermics 113, 102767. https://doi.org/10.1016/j.geothermics.2023.102767
- Ogland-Hand, J., Cairncross, E., Adams, B.M., Middleton, R.S., 2024. Nationwide Assessment of Sedimentary Basin Geothermal Power, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 6. https://doi.org/10.31224/3685
- Okoroafor, E.R., Williams, M.J., Gossuin, J., Jimoh-Kenshiro, O., Horne, R.N., 2021. Comparison of EGS Thermal Performance with CO2 and Water as Working Fluids, in: 46th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 10.
- Oldenburg, C., Daley, T., Borgia, A., Zhang, R., Doughty, C., Ramakrishnan, T.S., Altundas, B., Chugunov, N., 2016. Preliminary Simulations of Carbon Dioxide Injection and Geophysical Monitoring to Improve Imaging and Characterization of Faults and Fractures at EGS Sites, in: 41st Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 9.
- Ouf, J., Vardon, P.J., Khaledi, K., Luo, W., Jalali, M., Amann, F., 2025. Numerical analysis of far-field fault reactivation induced by reservoir cooling. Geothermics 127, 103234. https://doi.org/10.1016/j.geothermics.2024.103234
- Ozkan, E., Raghavan, R., Joshi, S.D., 1989. Horizontal-Well Pressure Analysis. Transaction AIME 287, 567–575.
- Palmer, C.D., Smith, R.W., Neupane, G., McLing, T.L., 2024. The Reservoir Temperature Estimator (RTEst): A multicomponent geothermometry tool. Geothermics 119, 102926. https://doi.org/10.1016/j.geothermics.2024.102926
- Palmer, T., 2024. The real butterfly effect and maggoty apples. Physics Today 77, 30–35. https://doi.org/10.1063/pt.eike.hsbz
- Park, S.G., Shin, S.W., Lee, D.K., Kim, C.R., Son, J.S., 2016. Relationship between Electrical Resistivity and Physical Properties of Rocks. Presented at the Near Surface Geoscience 2016 - First Conference on Geophysics for Mineral Exploration and Mining, Barcelona, Spain. https://doi.org/10.3997/2214-4609.201602101
- Peacock, J., Mitchell, M., Alumbaugh, D., Hartline, C., 2024. Summary of Annual Repeat Magnetotelluric Surveys of the Geysers Geothermal Field, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 6.
- Peacock, J.R., Alumbaugh, D., Mitchell, M., Hartline, C., 2022. Repeat Magnetotelluric Measurements to Monitor the Geysers Steam Field in Northern California, in: 47th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 5.
- Pepin, J.D., Burns, E.R., Dickinson, J.E., Duncan, L.L., Kuniansky, E.L., Reeves, H.W., 2021. National-Scale Reservoir Thermal Energy Storage Pre-Assessment for the United States, in: 46th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 10.
- Pestre, T., Antczak, E., Brachelet, F., Pallix, D., 2022. Multi-physical Characteristics of Limestones for Energy-Efficient and Sustainable Buildings Components. Journal of Materials in Civil Engineering 34. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004158
- Petty, S., 2022. Moving Technology from Oil and Gas to SuperHot EGS, in: 47th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 8.
- Phillips, S.L., Igbene, A., Fair, J.A., Ozbek, H., 1981. A Technical Databook for Geothermal Energy Utilization. Lawrence Berkeley National Laboratory, Berkeley, California.
- Piris, G., Herms, I., Griera, A., Colomer, M., Arnó, G., Gomez-Rivas, E., 2021. 3DHIP-Calculator—A New Tool to Stochastically Assess Deep Geothermal Potential Using the Heat-In-Place Method from Voxel-Based 3D Geological Models. Energies 14, 7338. https://doi.org/10.3390/en14217338
- Pocasangre, C., Fujimitsu, Y., 2018. A Python-based stochastic library for assessing geothermal power potential using the volumetric method in a liquid-dominated reservoir. Geothermics 76, 164–176. https://doi.org/10.1016/j.geothermics.2018.07.009
- Poletto, F., Farina, B., Carcione, J.M., 2018. Sensitivity of seismic properties to temperature variations in a geothermal reservoir. Geothermics 76, 149–163. https://doi.org/10.1016/j.geothermics.2018.07.001
- Poole, K., 2006. Construction of a Diagenetic History and Identification with Quality Ranking of Reservoir Flow Units: Grayson Field, Columbia County, Arkansas. Texas A&M, College Station, Texas.
- Popov, Y.A., Chekhonin, E.M., Savelev, E.G., Ostrizhniy, D.A., Shakirov, A.B., Romushkevich, R.A., Babich, E.A., Andreyev, B.E., Spasennykh, M.Y., Sannikova, I.A., 2024. Technique and results of determination of vertical variations in rock thermal properties, temperature gradient and heat flow. Geothermics 116, 102864. https://doi.org/10.1016/j.geothermics.2023.102864
- Power Plants in the United States [WWW Document], n.d. URL https://www.arcgis.com/apps/dashboards/201fc98c0d74482d8b3acb0c4cc47f16 (accessed 10.11.24).
- Pujades, E., Jurado, A., Scheiber, L., Teixidó, M., Criollo Manjarrez, R.A., Vázquez-Suñé, E., Vilarrasa, V., 2023. Potential of low-enthalpy geothermal energy to degrade organic contaminants of emerging concern in urban groundwater. Sci Rep 13, 2642. https://doi.org/10.1038/s41598-023-29701-x
- Purba, D., Adityatama, D.W., Fadhillah, F.R., Al-Asyari, M.R., Ivana, J., Larasati, T., Gumelar, P., Gunawan, A., Shafar, N.A., Mama, A.N., Nugraha, R.P., Pratama, E.B., 2022. A Discussion on Oil & Gas and Geothermal Drilling Environment Differences and Their Impacts to Well Control Methods, in: 47th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 15.
- Purdue, A.H., Miser, H.D., 1923. Geologic Atlas of the United States: Hot Springs Folio [Arkansas].
- pyfluids: Simple, full-featured, lightweight CoolProp wrapper for Python [WWW Document], n.d. URL https://github.com/portyanikhin/PyFluids (accessed 12.19.24).
- Radakovic-Guzina, Z., Damjanac, B., Fu, W., Finnila, A., Podgorney, R., Mclennan, J., 2024. Coupled Hydro-Mechanical Back-Analysis of Circulation Program at FORGE in July of 2023, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 9.
- Rallo, R., Carbonari, R., Ton, D., Ashari, R., Ashok, P., Bonneville, A., Bour, D., Cladouhos, T., Garrison, G., Horne, R., Oort, E.V., Petty, S., Schultz, A., Sorlie, C.F., Thorbjornsson, I.O., Uddenberg, M., Weydt, L., 2022. A Probabilistic Approach to Model and Optimize Geothermal Drilling, in: 47th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 12.
- Ramalingam, A., Arumugam, S., 2012. Experimental Study on Specific Heat of Hot Brine for Salt Gradient Solar Pond Application. International Journal of ChemTech Research 4, 956–961.
- Ramey, H.J., 1962. Wellbore Heat Transmission. Journal of Petroleum Technology 14, 427–435. https://doi.org/10.2118/96-PA
- Rangel-Arista, J.A., Zarrouk, S.J., Kaya, E., 2025a. Temperature transient analysis of a very high-permeability geothermal well: A numerical modelling approach. Geothermics 127, 103248. https://doi.org/10.1016/j.geothermics.2024.103248
- Rangel-Arista, J.A., Zarrouk, S.J., Kaya, E., Renderos Pacheco, R.E., 2025b. Downflows during transient geothermal well test analysis. Geothermics 125, 103158. https://doi.org/10.1016/j.geothermics.2024.103158
- Rangel-Jurado, N., Hawkins, A.J., Fulton, P.M., 2023. Influence of extreme fracture flow channels on the thermal performance of open-loop geothermal systems at commercial scale. Geotherm Energy 11, 19. https://doi.org/10.1186/s40517-023-00261-7
- Regenspurg, S., Blöcher, G., Bregnard, D., Hehn, V., Huenges, E., Junier, P., Kieling, K., Kluge, C., Kranz, S., Leins, A., Vieth-Hillebrand, A., Wiersberg, T., Zimmer, M., 2024. Geochemical and microbial processes in a deep geothermal well during seven years of production stop and their potential impact on the well performance. Geothermics 120, 102979. https://doi.org/10.1016/j.geothermics.2024.102979
- ResFrac, 2023.
- Ricks, W., Norbeck, J., Jenkins, J., 2022. The value of in-reservoir energy storage for flexible dispatch of geothermal power. Applied Energy 313, 118807. https://doi.org/10.1016/j.apenergy.2022.118807
- Robertson, E., 1988. Thermal Properties of Rocks (Open-File Report No. 88–441), Open-File Report. United States Geological Survey, Reston, Virginia.
- Robertson, E.C., Hemingway, B.S., 1995. Estimating Heat Capacity and Heat Content of Rocks (Open-file No. 95–622). United States Geological Survey.
- Rodríguez, J.A., Gharibi, M., Kuhn, O., 2021. Magnetotellurics in Exploration for Geothermal Targets. Recorder 46.
- Rose, P., McLENNAN, J., Jones, C., Simmons, S., England, K., 2024. Tracer Testing in Well 16B-32 at the Utah FORGE EGS Project, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 6.
- Rowe, A., Chou, J., 1970. Pressure-Volume-Temperature-Concentration Relation of Aqueous NaCl Solutions. Journal of Chemical and Engineering Data 15, 61–66.
- Roy, R., Taylor, B., Pyron, A., Maxwell, J., 1980. Heat-Flow Measurements in the State of Arkansas. University of Texas, El Paso, Texas.
- Rutqvist, J., Dobson, P.F., Garcia, J., Hartline, C., Jeanne, P., Oldenburg, C.M., Vasco, D.W., Walters, M., 2015. The Northwest Geysers EGS Demonstration Project, California: Pre-stimulation Modeling and Interpretation of the Stimulation. Math Geosci 47, 3–29. https://doi.org/10.1007/s11004-013-9493-y
- Sagar, R., Doty, D.R., Schmldt, Z., 1991. Predicting Temperature Profiles in a Flowing Well. SPE Production Engineering 6, 441–448. https://doi.org/10.2118/19702-PA
- Saishu, H., Takada, M., Yasutaka, T., Soma, N., 2024. Understanding the latent needs of diverse stakeholders unfamiliar with geothermal energy. Geothermics 125, 103154. https://doi.org/10.1016/j.geothermics.2024.103154
- Salter, T., Nasir, E., Barton, C., Samy, A., Harper, C., Vivian-Neal, P., 2024. Geothermal Reservoir Simulation Workflow for a Low-Enthalpy Fracture Hosted Resource, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford California, p. 21.
- Samrock, F., Grayver, A., Dambly, M.L.T., Müller, M.R., Saar, M.O., 2023. Geophysically guided well siting at the Aluto-Langano geothermal reservoir. GEOPHYSICS 88, WB105–WB114. https://doi.org/10.1190/geo2022-0617.1
- Santoso, R., Degen, D., Knapp, D., Pechnig, R., Wellmann, F., 2024. Entropy Production as A Comprehensive Indicator to Address Epistemic Uncertainties - A Case Study of the Hague, Netherlands, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 10.
- Satman, A., Tureyen, O.I., 2016. Geothermal wellbore heat transmission: Stabilization times for “static” and “transient” wellbore temperature profiles. Geothermics 64, 482–489. https://doi.org/10.1016/j.geothermics.2016.07.003
- Sausan, S., Hartung, M., Su, J., Schneider, M., Horne, R., 2024. Updates on the Development of Chloride-based Wireline Tool for Measuring Feed Zone Inflow in Enhanced Geothermal Systems (EGS) Wells, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 13.
- Savitri, K.P., Hecker, C., Van Der Meer, F.D., Sidik, R.P., 2021. VNIR-SWIR infrared (imaging) spectroscopy for geothermal exploration: Current status and future directions. Geothermics 96, 102178. https://doi.org/10.1016/j.geothermics.2021.102178
- Schärli, U., Rybach, L., 2000. Determination of specific heat capacity on rock fragments. Geothermics 30, 93–110. https://doi.org/10.1016/S0375-6505(00)00035-3
- Schemper, P., Loucks, R., Fu, Q., 2022. Depositional Systems, Lithofacies, and Lithofacies Stacking Patterns of the Jurassic Smackover Formaton ( Oxfordian) and Buckner Anhydrite (Kimmeridgian) in Van Zandt County, Texas: A Type-Cored Section from Northeastern Texas. GCAGS Journal 11, 16–36.
- Schifflechner, C., Kaufmann, F., Zosseder, K., Spliethoff, H., 2024. Unlocking the Flexibility Potential of Geothermal with Reversible Organic Rankine Cycles, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 5.
- Schlumberger, 2009. Log Interpretation Charts 2009 Edition.
- Schultz, A., Tu, X., 2024. Embedding high-resolution volcanic and geothermal investigations within the footprint of the continental scale US Magnetotelluric Array, in: International Workshop on Gravity, Electrical & Magnetic Methods and Their Applications, Shenzhen, China, May 19–22, 2024. Presented at the International Workshop on Gravity, Electrical & Magnetic Methods and Their Applications, Shenzhen, China, May 19–22, 2024, Society of Exploration Geophysicists and Chinese Geophysical Society, Shenzhen, China, pp. 11–20. https://doi.org/10.1190/GEM2024-004.1
- Schumacher, S., Moeck, I., 2020. A new method for correcting temperature log profiles in low-enthalpy plays. Geotherm Energy 8, 27. https://doi.org/10.1186/s40517-020-00181-w
- Schwab, J., 1978. Depositional Environments and Diagenesis of the Upper Smackover Formation Hempstead county, Arkansas. Texas Tech.
- scikit-learn: machine learning in Python — scikit-learn 1.6.1 documentation [WWW Document], 2025. URL https://scikit-learn.org/stable/ (accessed 2.5.25).
- SciPy - [WWW Document], n.d. URL https://scipy.org/ (accessed 11.6.24).
- Sea level rise, 2024. . Wikipedia.
- Sellars, J., Ball, J., Gould, K., Afonso, J.C., 2023. Mapping the 450°C isotherm: Mapping uncertainties and the potential of deep geothermal in Canada, in: Geoconvention 2023. Geosciences Convention, Calgary, Alberta, p. 16.
- Sen, P.N., Goode, P.A., 1992a. To: “Influence of temperature on electrical conductivity of shaly sands” by P. N. Sen and P. A. Goode (January 1992 GEOPHYSICS, p. 89–96). GEOPHYSICS 57, 1658–1658. https://doi.org/10.1190/1.1443233
- Sen, P.N., Goode, P.A., 1992b. Influence of temperature on electrical conductivity on shaly sands. GEOPHYSICS 57, 89–96. https://doi.org/10.1190/1.1443191
- Shen, P.Y., Beck, A.E., 1986. Stabilization of bottom hole temperatures with finite circulation time and fluid flow. Geophys 86, 63–90.
- Shen, W., Ritzwoller, M.H., 2016. Crustal and uppermost mantle structure beneath the United States. JGR Solid Earth 121, 4306–4342. https://doi.org/10.1002/2016JB012887
- Shervais, J.W., DeAngelo, J., Glen, J.M., Nielson, D.L., Garg, S., Dobson, P., Gasperikova, E., Sonnenthal, E., Liberty, L.M., Newell, D.L., Siler, D., Evans, J.P., 2024. Geothermal play fairway analysis, part 1: Example from the Snake River Plain, Idaho. Geothermics 117, 102865. https://doi.org/10.1016/j.geothermics.2023.102865
- Simmons, S., Jones, C., Kirby, S., Wannamaker, P., Pankow, K., Moore, J., 2024. The Interplay of Impermeable Crystalline Basement Rocks, Tectonic Fracturing and Magmatic Intrusion in the Development of Geothermal Resources at Utah FORGE and Roosevelt Hot Springs, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 8.
- Smeraglia, L., Verdecchia, A., Pederson, C., Igbokwe, O.A., Mueller, M., Harrington, R., 2024. Structural controls on hydrothermal fluid flow in a carbonate geothermal reservoir: Insights from giant carbonate veins in western Germany. Geothermics 125, 103149. https://doi.org/10.1016/j.geothermics.2024.103149
- Smith, C.M., Faulds, J.E., Brown, S., Coolbaugh, M., DeAngelo, J., Glen, J.M., Burns, E.R., Siler, D.L., Treitel, S., Mlawsky, E., Fehler, M., Gu, C., Ayling, B.F., 2023. Exploratory analysis of machine learning techniques in the Nevada geothermal play fairway analysis. Geothermics 111, 102693. https://doi.org/10.1016/j.geothermics.2023.102693
- Somerton, W., 1958. Some Thermal Characteristics of Porous Rocks. Transactions 213, 375–378. https://doi.org/10.2118/965-G
- Stacey, F.D., Davis, P.M., 2008. Physics of the earth, 4th ed. ed. Cambridge university press, Cambridge.
- Staněk, F., Jin, G., Simmons, J., 2022. Fracture Imaging Using DAS-Recorded Microseismic Events. Front. Earth Sci. 10, 907749. https://doi.org/10.3389/feart.2022.907749
- Statistical Review of World Energy, Energy Institute [WWW Document], 2024. . Statistical review of world energy. URL https://www.energyinst.org/statistical-review/resources-and-data-downloads (accessed 11.24.24).
- Stober, I., Bucher, K., 2021. Geothermal Energy: From Theoretical Models to Exploration and Development. Springer International Publishing, Cham, Switzerland. https://doi.org/10.1007/978-3-030-71685-1
- Stober, I., Ladner, F., Hofer, M., Bucher, K., 2022. The deep Basel-1 geothermal well: an attempt assessing the predrilling hydraulic and hydrochemical conditions in the basement of the Upper Rhine Graben. Swiss J Geosci 115, 3. https://doi.org/10.1186/s00015-021-00403-8
- Stolldorf, T., 2020. Using Static Temperatures to More Accurately Predict Geothermal Gradients in the Williston Basin. Geo News 3.
- Stone, C.G., Sterling, P.J., 1964. Relationship of Igneous Activity to Mineral Deposits in Arkansas (No. 8), Miscellaneous Publication. Arkansas Geological Commission, Little Rock, Arkansas.
- Stringfellow, W., Dobson, P., 2021. Technology for Lithium Extraction in the Context of Hybrid Geothermal Power, in: 46th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 20.
- Sun, H., Feistel, R., Koch, M., Markoe, A., 2008. New equations for density, entropy, heat capacity, and potential temperature of a saline thermal fluid. Deep Sea Research Part I: Oceanographic Research Papers 55, 1304–1310. https://doi.org/10.1016/j.dsr.2008.05.011
- Sweeney, R.W., Gordon, N., 2025. Geothermal Energy and U.S. Competitive Advantage: Drill, Baby, Drill. Carnegie Endowment for International Peace, Washington, D. C.
- Szklarz, S.P., Barros, E.G.D., Khoshnevis Gargar, N., Peeters, S.H.J., Van Wees, J.D., Van Pul-Verboom, V., 2024. Geothermal field development optimization under geomechanical constraints and geological uncertainty: Application to a reservoir with stacked formations. Geothermics 123, 103094. https://doi.org/10.1016/j.geothermics.2024.103094
- Takahashi, S., Yoshida, S., 2018. A Desktop Review of Calculation Equations for Geothermal Volumetric Assessment, in: 43rd Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 18.
- Talybov, M., Abdulagatov, I., 2021. High-temperature and high-pressure PVT measurements and derived thermodynamic properties of geothermal fluids from East Turkey. Geothermics 95. https://doi.org/10.1016/j.geothermics.2021.102125
- Tester, J. W., et al. (Ed.), 2006. The future of geothermal energy: impact of enhanced geothermal systems (EGS) on the United States in the 21st century: an assessment. Massachusetts Institute of Technology, Cambridge, Mass.
- The Future of Geothermal Energy – Analysis [WWW Document], 2024. . IEA. URL https://www.iea.org/reports/the-future-of-geothermal-energy (accessed 12.14.24).
- Thermophysical Properties of Fluid Systems [WWW Document], 2024. URL https://webbook.nist.gov/chemistry/fluid/ (accessed 8.5.24).
- Thomas, D., 2016. The Porosity And Permeability Distribution Of The Shoal Grainstone And Thrombolitic Facies Of The Smackover Formation In Little Cedar Creek And Brooklyn Fields In Southwestern Alabama (MS Thesis). University of Mississippi, Oxford, MS.
- Toner, J.D., Catling, D.C., 2017. A Low-Temperature Thermodynamic Model for the Na-K-Ca-Mg-Cl System Incorporating New Experimental Heat Capacities in KCl, MgCl 2 , and CaCl 2 Solutions. J. Chem. Eng. Data 62, 995–1010. https://doi.org/10.1021/acs.jced.6b00812
- Trugman, D.T., Ben-Zion, Y., 2023. Coherent Spatial Variations in the Productivity of Earthquake Sequences in California and Nevada. The Seismic Record 3, 322–331. https://doi.org/10.1785/0320230039
- Turcotte, D.L., Schubert, G., 2002. Geodynamics, 2nd ed. ed. Cambridge University Press, Cambridge ; New York.
- Turnšek, M., Kokot, K., 2025. Experiences as heuristics for geothermal public perception: Testing the correlation between thermal waters recreation and geothermal energy perception. Geothermics 125, 103168. https://doi.org/10.1016/j.geothermics.2024.103168
- Ucok, H., 1979. Temperature dependence on the electrical resistivity of aqueous salt solutions and solution-saturated porous rocks (PhD). University of Southern California, Los Angeles, CA.
- Ucok, H., Ershaghi, I., Olhoeft, G.R., 1980. Electrical Resistivity of Geothermal Brines. JPT 11.
- US Department of Commerce, N., n.d. Global Monitoring Laboratory - Carbon Cycle Greenhouse Gases [WWW Document]. URL https://gml.noaa.gov/ccgg/trends/ (accessed 8.24.24).
- USDOE Idaho Operations Office, Idaho Falls, ID (US); GeothermEx, Inc. (US), 1998. Data Review of the Hot Dry Rock Project at Fenton Hill, New Mexico (No. DOE/ID/13517-2, 7511). United States Department of Energy. https://doi.org/10.2172/7511
- Ussher, G., Harvey, C., Johnstone, R., Anderson, E., 2000. Understanding the Resistivities Observed in Geothermal Systems. Presented at the World Geothermal Congress 2000, Kyushi-Tohoku, Japan.
- Van De Ven, A., Bayer, P., Koenigsdorff, R., 2024. Analytical solution for the simulation of ground thermal conditions around planar trench collectors. Geothermics 124, 103123. https://doi.org/10.1016/j.geothermics.2024.103123
- Vardon, P.J., Abels, H.A., Barnhoorn, A., Daniilidis, A., Bruhn, D., Drijkoningen, G., van Esser, B., Laumann, S., van Paassen, P., Meleza, L.V., Vondrak, A.G., 2024. A Research And Energy Production Geothermal Project On The TU Delft Campus: Project Implementation And Initial Data Collection, in: 49th Workshop on Geothermal Rservoir Engineering. Stanford University, Stanford, California, p. 7.
- Veatch, A.C., 1906. Geology and Underground Water Resources of Northern Louisiana and Southern Arkansas (Professional Paper No. 46). United States Geological Survey.
- Velásquez, A.F.B., Velazco, A.T., Escobar, J.A.Á., Esquitin, Y., Vasques, R.R., Queiroz, L.R.D., Teodoriu, C., 2024. Design and Experimental Validation of a Unique Geothermal Downhole Valve for FORGE Project, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 9.
- Vera, M., Torres, W., Galli, C., Chagnes, A., Flexer, V., 2023. Environmental Impact of Direct Lithium Extraction From Brines. Nature Reviews: Earth & Environment 4, 149–165. https://doi.org/10.1038/s43017-022-00387-5
- Verma, S.P., Andaverde, J., Santoyo, E., 2006. Statistical evaluation of methods for the calculation of static formation temperatures in geothermal and oil wells using an extension of the error propagation theory. Journal of Geochemical Exploration 89, 398–404. https://doi.org/10.1016/j.gexplo.2005.11.015
- Vestal, J., 1950. Petroleum Geology of the Smackover Formation of Southern Arkansas (Information Circular No. 14). Arkansas Geological Commission, Little Rock, Arkansas.
- Voskov, D., Abels, H., Barnhoorn, A., Chen, Y., Daniilidis, A., Drijkoningen, G., Geiger, S., Laumann, S., Song, G., Vardon, P.J., Meleza, L.V., Verschuur, E., Vondrak, A., 2024. A research and production geothermal project on the TU Delft campus:, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 11.
- Wang, K., Yuan, B., Ji, G., Wu, X., 2018. A comprehensive review of geothermal energy extraction and utilization in oilfields. Journal of Petroleum Science and Engineering 168, 465–477. https://doi.org/10.1016/j.petrol.2018.05.012
- Wang, L., Li, H., Gong, Y., Bu, X., 2024. Numerical simulation of single-well enhanced geothermal power generation system based on discrete fracture model. Geothermics 120, 103001. https://doi.org/10.1016/j.geothermics.2024.103001
- Wang, X., Levy, E.K., Pan, C., Romero, C.E., Banerjee, A., Rubio-Maya, C., Pan, L., 2019. Working fluid selection for organic Rankine cycle power generation using hot produced supercritical CO2 from a geothermal reservoir. Applied Thermal Engineering 149, 1287–1304. https://doi.org/10.1016/j.applthermaleng.2018.12.112
- Waples, D., Waples, J., 2004. A Review and Evaluation of Specific Heat Capacities of Rocks, Minerals, and Subsurface Fluids. Part 1: Minerals and Nonporous Rocks. Natural Resources Research 13, 97–122.
- Waples, D.W., Waples, J.S., 2004. A Review and Evaluation of Specific Heat Capacities of Rocks, Minerals, and Subsurface Fluids. Part 2: Fluids and Porous Rocks. Natural Resources Research 13, 123–130. https://doi.org/10.1023/B:NARR.0000032648.15016.49
- Warren, J., 2020a. Brine density & persistence: Part 2 Layered brines & indicator textures, Salty Matters. Saltworks Consultants Pty Ltd., Kingston Park, South Australia.
- Warren, J., 2020b. Brine density & persistence: Part 1 Physical properties of a brine, Salty Matters. Saltworks Consultants Pty Ltd., Kingston Park, South Australia.
- Webster, K., Bannwarth, A., 2024. AR basement mapping in Google Earth.
- Weeks, W.B., 1938. South Arkansas Stratigraphy with Emphasis on the Older Coastal Plain Beds. Bulletin of the American Association of Petroleum Geologists 22, 31.
- Weinand, J., Vandenberg, G., Risch, S., Behrens, J., Pflugradt, N., Linßen, J., Stolten, D., 2023. Low-Carbon Lithium Extraction Makes Deep Geothermal Plants Cost-Competitive in Energy Systems.
- Wen, L., Kang, G., Bai, C., Gao, G., 2019. Studies on the relationships of the Curie surface with heat flow and crustal structures in Yunnan Province, China, and its adjacent areas. Earth Planets Space 71, 85. https://doi.org/10.1186/s40623-019-1063-1
- White, D.E., Williams, D.L., 1975. Assessment of Geothermal Resources of the United States (Circular No. 726). United States Geological Survey, Arlington, Virginia.
- White, M., Vasyliv, Y., Beckers, K., Martinez, M., Balestra, P., Parisi, C., Augustine, C., Bran-Anleu, G., Horne, R., Pauley, L., Bettin, G., Marshall, T., Bernat, A., 2024. Numerical investigation of closed-loop geothermal systems in deep geothermal reservoirs. Geothermics 116, 102852. https://doi.org/10.1016/j.geothermics.2023.102852
- Wiktorski, E., Cobbah, C., Sui, D., Khalifeh, M., 2019. Experimental study of temperature effects on wellbore material properties to enhance temperature profile modeling for production wells. Journal of Petroleum Science and Engineering 176, 689–701. https://doi.org/10.1016/j.petrol.2019.01.102
- Wilmarth, M., Stimac, J., 2015. Power Density in Geothermal Fields, in: Proceedings World Geothermal Congresss. Presented at the World Geothermal Congress, Melbourne, Australia, p. 7.
- Winnemucca, Nevada Climate - 89445 Weather, Average Rainfall, and Temperatures [WWW Document], n.d. URL http://www.worldclimate.com/climate/us/nevada/winnemucca (accessed 7.31.24).
- Witherspoon, P.A., Wang, J.S.Y., Iwai, K., Gale, J.E., 1980. Validity of Cubic Law for fluid flow in a deformable rock fracture. Water Resources Research 16, 1016–1024. https://doi.org/10.1029/WR016i006p01016
- Wolfram|Alpha: Making the world’s knowledge computable [WWW Document], n.d. URL https://www.wolframalpha.com (accessed 8.23.24).
- Wood, S.H., Clemens, D.M., 2002. Geologic and Tectonic History of the Western Snake River Plain, Idaho and Oregon. Idaho Geological Survey Bulletim 30, 69–103.
- Xing, P., England, K., Mclennan, J., Podgorney, R., Moore, J., 2024. Analysis of Circulation Tests and Well Connections at Utah FORGE, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 8.
- Xu, H.H., Xing, H.L., Wyborn, D., Mora, P., 2007. Analytical and Numerical Investigation of Fracture Dominated Thermo-Fluid Flow in Geothermal Reservoir, in: Shi, Y., Van Albada, G.D., Dongarra, J., Sloot, P.M.A. (Eds.), Computational Science – ICCS 2007, Lecture Notes in Computer Science. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1156–1163. https://doi.org/10.1007/978-3-540-72588-6_183
- Ye, Z., Ghassemi, A., 2024. The Updated Wellbore Stress Models for Utah FORGE, in: 49th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, p. 9.
- Yehia, T., Gasser, M., Ebaid, H., Meehan, N., Okoroafor, E.R., 2024. Comparative analysis of machine learning techniques for predicting drilling rate of penetration (ROP) in geothermal wells: A case study of FORGE site. Geothermics 121, 103028. https://doi.org/10.1016/j.geothermics.2024.103028
- Yu, P., Mali, A., Velaga, T., Bi, A., Yu, J., Marone, C., Shokouhi, P., Elsworth, D., 2024. Crustal permeability generated through microearthquakes is constrained by seismic moment. Nat Commun 15, 2057. https://doi.org/10.1038/s41467-024-46238-3
- Yusifov, M., Enriquez, N., 2025. From Core to Code: Powering the AI Revolution with Geothermal Energy. Project InnerSpace, Boston MA.
- Zhou, W., Lanza, F., Grigoratos, I., Schultz, R., Cousse, J., Trutnevyte, E., Muntendam-Bos, A., Wiemer, S., 2024. Managing Induced Seismicity Risks From Enhanced Geothermal Systems: A Good Practice Guideline. Reviews of Geophysics 62, e2024RG000849. https://doi.org/10.1029/2024RG000849
- Zhu, X., Gao, Z., Chen, T., Wang, W., Lu, C., Zhang, Q., 2022. Study on the Thermophysical Properties and Influencing Factors of Regional Surface Shallow Rock and Soil in China. Frontiers in Earth Science 10. https://doi.org/10.3389/feart.2022.864548
- Zielinski, G.W., Poprawa, P., Szewczyk, J., Grotek, I., Kiersnowski, H., Zielinski, R.L.B., 2012. Thermal effects of Zechstein salt and the Early to Middle Jurassic hydrothermal event in the central Polish Basin. Bulletin 96, 1981–1996. https://doi.org/10.1306/04021211142
- Zoback, M.D., 2007. Reservoir geomechanics. Cambridge University Press, Cambridge.
- Zschocke, A., 2005. Correction of non-equilibrated temperature logs and implications for geothermal investigations. J. Geophys. Eng. 2, 364–371. https://doi.org/10.1088/1742-2132/2/4/S10